Ситаллы свойства. Ситаллы и их применение

Стремление избавиться от главных недостатков стекла, повысить его устойчивость к механическим и термическим воздействиям привело к созданию за счет управляемой кристаллизации нового стеклокристаллического материала -- ситалла.

Ситаллы изготовляют на основе неорганических стекол путем их полной или частичной управляемой кристаллизации. Термин «ситаллы» образован из слов: стекло и кристаллы. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и" керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов -- более мелкозернистой и однородной микрокристаллической структурой. По многим параметрам ситалл превосходит стекло и композиции на основе стекла. Недостатком ситалла является меньшая химическая стойкость -- следствие неоднородной структуры и наличия оксидов щелочных металлов. Из-за рассеяния света на границах кристаллитов ситаллы в слое 0,35... 1 мм уже непрозрачны. От керамики ситаллы отличаются хорошей обрабатываемостью, отсутствием пористости, меньшей стоимостью. Ситаллы марок Ст32, Ст38, Ст50 (цифра обозначает значение ТКЛР) в виде полированных пластин толщиной 0,35... 1 мм размером 60Х Х48 мм являются основным материалом подложек тонкопленочных ГИС.

В процессе кристаллизации стекла наиболее существенно изменяются следующие его свойства:

  • 1 Растет механическая прочность, особенно заметно при испытании на изгиб. Причина состоит в том, что поверхностные трещины, наталкиваясь на кристаллиты, не могут развиваться так интенсивно, как в стекле.
  • 2 Повышается нагревостойкость и температура начала деформации, так как диапазон температур размягчение-плавление значительно сужается по сравнению со стеклами.
  • 3 Появляется дополнительное средство регулирования свойств.

Термин «ситаллы» образован из слов: стекло и кристаллы. За рубежом их называют стеклокерамикой, пирокерамами. По структуре и технологии получения ситаллы занимают промежуточное положение между обычным стеклом и керамикой. От неорганических стекол они отличаются кристаллическим строением, а от керамических материалов -- более мелкозернистой и однородной микрокристаллической структурой.

Получаются ситаллы путем плавления стекольной шихты специального состава с добавкой нуклеаторов (катализаторов), охлаждения расплава до В состав стекла, применяемого для получения ситаллов, входят окислы Li2O, Аl2О3, SiO2, MgO, CaO и др.; кроме того, добавляются катализаторы кристаллизации (нуклеаторы). К ним относятся соли светочувствительных металлов Au, Ag, Си или фтористые и фосфатные соединения, TiO2 и др. Нуклеаторы добавляют при плавлении стекольной шихты, далее расплав охлаждают до пластичного состояния, а затем формируют из него изделия методами стекольной технологии, после чего производится ситаллизация (кристаллизация).

В зависимости от способа получения ситаллы делятся на фотоситаллы и термоситаллы.

Фотоситаллы получают из стекол литиевой системы с нуклеаторами -- коллоидными красителями. В расплавленном стекле (Тпл = 1250 -- 1600° С), нуклеаторы находятся в виде ионов, выделяющихся из соответствующих окислов. Центрами кристаллизации являются мельчайшие частицы металлов. Для инициирования фотохимический реакции стекло облучают ультрафиолетовыми или рентгеновскими лучами. При термообработке происходит рост и образование кристаллов вокруг металлических частиц. Одновременно при проявлении (низкотемпературной обработке) материал приобретает определенную окраску.

Процесс кристаллизации происходит в две стадии: вначале при температурах, близких к Тc, происходит образование зародышей кристаллов, которые растут до определенных размеров и вызывают кристаллизацию других фаз в стекле. В результате образуется жесткий кристаллический каркас, препятствующий деформированию изделия и позволяющий вести дальнейший процесс при более высокой температуре (900--1100° С). На этой стадии изделия полностью и равномерно закристаллизовываются.

Термоситаллы получаются из стекол, систем MgO -- Al2O3 -- SiO2, CaO -- А12O3 -- SiO2 и других с добавкой TiO2, FeS и т. п. нуклеаторов. Стекломассу подвергают двух ступенчатой термообработке. На первой ступени обработки образуются и растут зародыши кристаллизации, создающие упрочняющий изделие каркас, при температуре равной 500 - 700 градусов Цельсия. На второй ступени при более высокой температуре (900 - 1100 градусов Цельсия) происходит окончательная кристаллизация стекла. Когда процесс ситаллизации закончен, детали охлаждают до комнатной температуры.

Структура ситаллов многофазная, состоит из зерен одной или нескольких кристаллических фаз, скрепленных между собой стекловидной прослойкой. Содержание кристаллической фазы колеблется от 30 до 95%. Размер оптимально развитых кристаллов обычно не превышает 1--2 мкм. По внешнему виду ситаллы могут быть непрозрачными и прозрачными (количество стеклофазы до 40%).

Свойства ситаллов определяются структурой и фазовым составом. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре. Свойства ситалла изотропны. В них совершенно отсутствует всякая пористость. Усадка при кристаллизации - до 2 %. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам. Стеклокристаллические материалы обладают высокой химической устойчивостью к кислотам и щелочам, не окисляются даже при высоких температурах. Они газонепроницаемы и обладают нулевым водопоглощением. Ситаллы относят к хрупким материалам, по твердости они приближаются к стали.

Свойства ситаллов

  • 1 Плотность 2.3 - 2.8 Мг/ м3
  • 2 Водопоглощение 0.01%
  • 3 Температурный коэффициент

линейного расширения (12-120) ?10-7 1/град

  • 4 Удельная теплопроводность 7,4 -- 16,9 ккал/(м?ч?град)
  • 5 Температура текучести 750-1350° С.
  • 6 Предел прочности при изгибе 50-260 МПа.
  • 7 Электрическая прочность 25-75 МВ/м
  • 8 Высокая термостойкость 500 - 900° С

Многие ситаллы обладают высокой химической стойкостью к действию сильных кислот и щелочей. Доступность сырья и невысокая технология получения обеспечивают невысокую стоимость изделия. По техническому назначению ситаллы можно подразделить на установочные и конденсаторные. Установочные ситаллы используют в качестве подножек ГИМ и дискретных пассивных элементов (н., тонкопленочных резисторов), деталей СВЧ- приборов и некоторых типов электронных ламп. Достоинством ситалловых конденсаторов являются повышенная электрическая прочность по сравнению с керамическими конденсаторами.

Камни, которые украшали одежду и ювелирные украшения считались предметом роскоши. Но к сожалению, они были доступны только для богатых людей.

Красивыми и дорогими вещами хотели обладать и люди со средним достатком. И воплотить это в реальность можно было, только воспользовавшись искусственными аналогами драгоценных камней.

В настоящее время самыми распространенными образцами искусственно полученных камней для создания ювелирных украшений необыкновенной красоты являются ситалл и наноситалл . Подробная статья об , здесь.

Название ситалла говорит о соединении двух металлов — это кремний и алюминий. Если быть точным, то это алюмосиликатное стекло. В природе встречается настоящий его аналог — .

Изобретен он был в России и по сравнению со всеми остальными искусственно выращенными кристаллами, он самый распространенный и имеет очень много преимуществ. Он без цвета и очень сильно похож на бриллиант. Но у него есть виды, которые могут имитировать изумруд, топаз и их не отличить от оригинала.

Следующий — это наноситал . Он является также искусственно полученным образцом, у него встречается достаточно разная степень прозрачности. Его изготавливают способом кристаллизации стекла и требуемым химическим составом.

Его относят к стеклокристаллическим материалам. Производится он также в России. И отечественные ученые используются для получения два оксида SiO2, Al2O3, как правило, это основные составляющие в искусственных драгоценных камнях.

У камня может быть любой цвет и размер. Что касается цены, то украшения и различные вещи с такими камнями будут стоить на порядок ниже их оригиналов. Также немаловажно то, что в наноситалле нет вредных веществ для человека, поэтому его можно носить, не пугаясь за здоровье.

В последнее время их очень часто стали использовать в ювелирном деле. Появление данных кристаллов развило конкуренцию, которая стала собственно главным двигателем.

Драгоценные камни привлекают очень много клиентов, которые желают купить красивую вещь, но, как правило, она очень дорогая и не всегда по карману. Поэтому появление таких камней является, по сути дела, необходимым.

История создания ситалла

Наука никогда не стоит на месте, постоянно ищет какие – то новые способы или методы получения чего либо. Итак, когда-то в далеком 1739 году Рене Реомюр впервые пытался получить стекло, которые будет выдерживать большие температурные нагрузки. Это были первые попытки насытить аморфное стекло.

Рене был академиком из Парижской и Петербуржской академии наук. Тогда он получил новый материал, который имел схожесть с фарфором. Его стекло было не прозрачным, но это было за счет размера кристаллов, но, к сожалению, его изобретение не восприняли, и оно осталось, ни кому ненужным.

И только спустя целых два столетия, появился интерес к варке стеклу и исследования были возобновлены, но уже в Америке. Тогда, в 20 веке, многие промышляли шпионажем в сфере промышленности и новость о новой разработки материала мгновенно разлетелась по всему миру.

Но технология ситаллов оказалась вовсе не сложной, а вот придумать ему соответствующее название оказалось сложнее. Итак, американцы придумали название «пирокерам», а Польше же этот материал называли «квазикером», а в Англии назвали «слагцерами».

Но на этом дискуссии не закончились, и весь мир обратился к России. Знаменитый физик, специалист по стеклу, он был лауреатом Сталинских премий, Исаак Китайгородский предложил назвать новый материал ситалл.

Физические свойства

Несмотря на то, что ситалл очень похож на стекло у него есть свойства, которыми он от него отличается. Его формула схожа с горным хрусталем. Из него и получают кварцевое стекло.

Давайте рассмотрим имеющиеся свойства:

  1. Первое свойство — это твердость . Ее измеряют с помощью шкалы Мооса и это значение составляет 8 баллов. Этот параметр на 1 балл меньше, чем у .
  2. Второе свойство — это пористость. И это значение равно нулю.
  3. Следующее свойство — плотность. Ситалл по плотности 2400-2950 кг/м 3 . Поэтому данный материал обладает очень хорошей теплопроводностью.
  4. Структура у него тонкозернистая , поэтому обладает прекрасными электроизоляционными свойствами.
  5. Температура плавления равна 1030 о С , но бывает и выше. Это зависит от разновидности камня, но вот ниже этого значения не бывает. Термостойкость повышают за счет добавления в состав ситалла лития и алюминия.
  6. Также камень устойчив к химической обработке .
  7. Также материал очень прозрачный , что, несомненно, является положительным свойством. Причем зависит она от размера кристаллов.

Все эти свойства обусловлены использованными компонентами для получения. Основой служит шихта, то есть определенная смесь материалов.

Она содержит в себе один или несколько ядрообразующих веществ. И они получали название нуклеаторы. Они увеличивают число центральных элементов для кристаллизации. В итоге в 1 мм 3 есть множество таких образований.

Процесс получения:

  1. Сначала необходимо расплавить шихту. Это процесс делится на 2 этапа. Сначала формируются центры кристаллизации, затем температура доводится до такого значения, когда происходит рост агрегатов.
  2. Следующим этапом необходимо выработать массу. Это процесс заключается в отливке предметов. Отлив изделий заключается в использовании определенных форм.
  3. На последнем же этапе охлаждают массу.

Ювелирные ситаллы

Ситалл был изобретен еще в 70 годах прошлого столетия, но вот использовать в ювелирном искусстве его стали только сейчас. И все дело было в том, что для создания использовали отходы металлургии. Но это давало камню очень мрачные и неприглядные цвета, которые не всегда можно было использовать в украшениях.

Но среди них были такие оттенки:

  • серый;
  • зеленый;
  • бурый.

И где-то примерно до 1970 года его использовали, чтобы производить плитку для облицовки. Позже же появились минералы бежевого цвета, которые уже более подходили для ювелирного дела.

Но ученые на этом не останавливались и разработки велись постоянно, добавлялись разные пигменты. Благодаря этому на сегодняшний день существует очень много различных оттенков и цветов этого камня.

Сегодня же ювелиры используют ситалл как драгоценный камень. Его используют в создании украшений, для инкрустирования различных предметов. Любое изделие из ситалла засверкает ярче, если правильно подобрать камень.


Среди украшений с ситаллом можно встретить:

  • кольца, перстни (причем они могут быть как массивными, так и очень миниатюрными);
  • подвески;
  • броши;
  • браслеты;
  • запонки;
  • серьги с ситаллом; Предлагаем вашему вниманию статью о , здесь.
  • ожерелья.

Все эти украшения выглядят очень достойно с этим камнем, причем цена намного дешевле, чем у изделий с бриллиантами, алмазами и любыми другими настоящими драгоценными камнями.

Цвет ситалла

Самые первые камни, которые были еще получены до войны, были очень невзрачными и некрасивыми. Но их пытались окрашивать с помощью окисей металлов в бурые цвета с прозеленью. Но потом началась война, и было не до этого, только уже намного позже появились первые образцы камня молочной окраски.

Но на этом ювелирная промышленность не остановилась и стала пробовать дальше, таким образом, появились яркие оттенки, которые прекрасно смотрятся в ювелирных украшениях.

Среди цветов, которые встречаются в этих камнях, есть и красные, и розовые, и голубые, зеленые, фиолетовые. И все они изумительные, к тому же они очень похожи на аналоги настоящих камней.

Подробнее о , читайте здесь.

Преимущества камня

У камней такого рода очень много плюсов, которые просто заставляют их использовать все чаще и чаще.

Давайте же их рассмотрим:

  • Они обладают прекрасной устойчивостью к термически ударам;
  • Огромная палитра цветов, возможно, подобрать любой цвет;
  • Данные камни очень прочные, твердые, плотные, износостойкие;
  • Конечно же, очень привлекательная цена по сравнению с их аналогами драгоценных камней.

Также эти камни новые и, конечно, у многих просто неподдельный интерес к ним. Потому что среди них такое огромное разнообразие по цветовой гамме, да еще и по привлекательной цене, что также немаловажно.

Применение ситалла

Появление новых синтетических камней, конечно, влечет за собой следующий вопрос, а где же они используются.


Итак, ситалл используется в таких сферах:

  • Применяются они во многих отраслях промышленности , к примеру, машиностроительная отрасль. Здесь камни используют, чтобы наносить покрытие на детали из металла. Это способствует исключению появления коррозии, а также дает изделию блеск.
  • Следующая отрасль, где используются камни — это нефтеперерабатывающая. Здесь их используют для создания ситалловых труб. Эти трубы имеют хорошую термическую и механическую износостойкость, прочность, надежность, которая просто необходима в данной отрасли.
  • Ситалл используется и в быту , для создания кастрюль, сковородок.
  • В авиационном строительстве используют стеклокерамику на их основе для ракетных обтекателей.
  • Также ситалл используют в микросхемах . Здесь они уже играют роль диэлектрической изоляции.
  • Их используют и в стоматологии. Так как ситаллы имеют хорошую прочность, износостойкость, прекрасным составом и структурой, поэтому они являются незаменимыми в изготовлении коронок для зубов. Сейчас уже известны и используются 4 ситалла:
    1. «Сикор» его используют для выполнения индивидуальных коронок. «Сикор» был получен с помощью кристаллизации альбит — диопсид. По сравнению с фарфоровыми массами, они имеют ряд преимуществ: наличие опакового слоя, который дает гарантию, что трещин при спекании не будет, для него нужен особый обжиг, также обладает большим диапазоном рабочей температуры.
    2. «Симет» для протезов из металлокерамики. Что касается «Симет» то им выполняют облицовку каркасов цельнолитых протезов. Для них используется материал — стекло лейцит-альбитового состава. Из него вполне возможно сделать индивидуальные протезы. К тому же этот вид нейтральный и с химической, и с биологической точки зрения. Он не вызывает аллергию у пациента, что очень важно при установке протезов.
    3. «Биоситалл» используется, чтобы восстанавливать повреждения в костных тканях;
    4. для изготовления протезов.
  • В строительной области всегда за новые материалы, и сейчас используется новый материал для полов — это стекломрамор. Он обладает очень высокими эксплуатационными свойствами, которые являются незаменимыми для такого вида материала.
  • Ювелирная промышленность. Как уже было замечено, он способен имитировать различные камни, причем он прозрачнее природных аналогов. Одним из успешных образцов является аметрин — ситалл. Амеетрин — это

Современные гуру ювелирного дела просто не могут отказать себе в удовольствии использовать в украшениях камни, которые искусственно выращены специалистами минералогии. И причины этому весьма обоснованы. Во-первых, искусственные, или, правильнее сказать, синтезированные, камни по своим качествам полностью соответствуют натуральным. Во-вторых, подобный тип минералов позволяет экономить природные запасы драгоценностей. И в-третьих, синтезированные камни - это безумно красиво. Это процесс тонкой ювелирной работы, результатом которой является кристально чистый, облагороженный камень с насыщенным цветом и мерцающими бликами кристаллов внутри. Именно таким можно назвать ситалл, минерал, который заслуженно получил имя «камень 21 века».

Ситалл - что это, и как о нем узнал мир?

Ситалл - это ювелирный камень, который получают путем кристаллизации стекла. На первый взгляд, такое определение не вызывает симпатии к подобным украшениям, но, познакомившись ближе со свойствами ситалла, можно уверенно говорить про его качество, прочность и совершенную красоту. И сегодня, несмотря на то, что основа камня - стекло, в ювелирном деле он активно используется как аналог природной вставки. За счет управляемой поликристаллизации, то есть насыщения стекла множеством мелких кристалликов, камень приобретает внушительную твердость и неповторимый блеск.

Впервые стекло начали искусственно облагораживать в конце 18 века. Рене Реомюр, ученый Парижской и Петербуржской академий, в ходе лабораторных исследований пришел к выводу, что стекло можно подвергать различным жаростойким экспериментам. В результате Реомюр изобрел материал, который по своим внешним особенностям был очень похож на фарфор.

Но разработанное ученым стекло не получило должного применения ни в науке, ни в потребительской сфере. Только спустя 200 лет опыты по кристаллизации стекла возобновились в Америке. Благодаря американским специалистам мир стал применять подобные способы обработки «стекло-кристаллов».

Имя «ситалл» камень получил от советского ученого Исаака Китайгородского, который сложил две основы слов «стекло» и «кристалл». Такое незамысловатое название легко прижилось и полюбилось всему миру.

Почему ситалл так популярен?

Камень ситалл обладает рядом положительных характеристик:

  • Благодаря термальной и другой лабораторной обработке ситалл приобретает небывалую прочность и твердость, за счет чего он даже конкурирует со сталью.
  • Ситалл имеет отличные оптические качества, он может быть отличной альтернативой кварцевому стеклу, которое также славится безусловной прочностью.
  • Камень безупречен в своей чистоте (прозрачности) и мерцании. Преломление солнечных лучей позволяет кристалликам переливаться разными оттенками, придавая украшению особый магический эффект.
  • Помимо удивительной красоты и его физических качеств, большое преимущество ситалла - это сравнительно невысокая цена.


Цветовая палитра ситалла

С усовершенствованием ювелирной техники облагораживания камней каждому кристаллу можно придать абсолютно любую окраску. И если раньше все вставки получались невзрачных серых или бурых оттенков, то сегодня в магазинах драгоценностей можно встретить ситалл самой разнообразной палитры. Его цвет зависит от пигментов, добавленных в основу кристалла. За счет такого способа можно создать «аналогию» всех драгоценностей: рубина, сапфира, изумруда.

Ситаллы сита́ллы

стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределённых в стекловидной фазе. Высокая прочность, твёрдость, химическая и термическая стойкость, низкий температурный коэффициент расширения. Различают технические ситаллы (изготовляемые на основе искусственных композиций из различных химических соединений - оксидов, солей), петроситаллы (из горных пород - базальтов, диабазов и др.) и шлакоситаллы (из металлургических или топливных шлаков). Изделия из ситалла (панели, трубы, электроизоляторы и др.) получают методом стекольной или керамической технологии. Ситаллы применяют также для герметизации электровакуумных приборов, в оптике и т. д.

СИТАЛЛЫ

СИТА́ЛЛЫ (от «стекло и кристаллы»), стеклокристаллические (микрокристаллические) материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределенных в стекловидной фазе. Главная особенность ситаллов - тонкозернистая равномерная стеклокристаллическая структура. От неорганических стекол (см. СТЕКЛО НЕОРГАНИЧЕСКОЕ) они отличаются кристаллическим строением, а от керамических материалов (см. КЕРАМИКА) – более зернистой и однородной микрокристаллической структурой. Получают путем направленной (катализированной) кристаллизации стекол специальных составов, протекающей в объеме заранее отформованного изделия. Различают технические ситаллы (изготовляемые на основе искусственных композиций из различных химических соединений - оксидов, солей), петроситаллы (из горных пород - базальтов, диабазов и др.) и шлакоситаллы (из металлургических или топливных шлаков).
Свойства
В отличие от обычных стекол, свойства которых определяются в основном их химическим составом, для ситаллов решающее значение имеют структура и фазовый состав. Причина ценных свойств ситаллов заключается в их исключительной мелкозернистости, почти идеальной поликристаллической структуре, что обусловливает сочетание высокой твердости и механической прочности с отличными электроизоляционными свойствами, высокой температурой размягчения, хорошей термической и химической стойкостью. Свойства ситаллов изотропны. В них совершенно отсутствует вязкая пористость. Усадка материала при его переработке незначительна. Большая абразивная стойкость делает их малочувствительными к поверхностным дефектам. Плотность ситаллов лежит в пределах 2400-2950 кг/м 3 , прочность при изгибе – 70-350 МПа, временное сопротивление – 112-161 МПа, сопротивление сжатию – 7000-2000 МПа. Модуль упругости 84 – 141Гпа. Прочность ситаллов зависит от температуры. Твердость их близка к твердости закаленной стали (V - 7000-10500 МПа). Они весьма износостойки (f тр = 0,07-0,19). Коэффициент линейного расширения лежит в пределах (7– 300)10 -7 с -1 . Ситаллы с маленьким коэффициентом линейного расширения весьма нагревостойки. По теплопроводности ситаллы в результате повышенной плотности превосходят стекла. Термостойкость высокая в интервале температур 50 -9000­°С. Термическая устойчивость ситаллов обеспечивается очень небольшими, а иногда и отрицательными (от -7 . 10 -7 до +3 . 10 -7) коэффициентами термического расширения. Удельное объемное сопротивление 10 8 -10 12 Ом.м, электрическая прочность 25-75 МВ/м, тангенс угла диэлектрических потерь при 10 6 Гц (10-800).10 -4 . Многие ситаллы обладают высокой химической стойкостью к действию сильных кислот (кроме плавкиковой) и щелочей.
Оптическое кварцевое стекло (см. КВАРЦЕВОЕ СТЕКЛО) может быть заменено прозрачными ситаллами, которые имеют перед ним то преимущество, что в силу малых коэффициентов теплового расширения они нечувствительны к тепловым ударам. Прозрачность связана с размером кристаллов, меньшим длины полуволны видимого света и близостью показателей их преломления к стекловидной фазе.
История получения
Впервые поликристаллическое «фарфоровое» изделие, способное без деформаций выдерживать высокие температуры, получил при кристаллизации стекла французский химик Р. Реомюр (см. РЕОМЮР Рене Антуан) в 1739. Вновь эта идея возродилась лишь в конце 20-х гг. ХХ века, когда в ряде стран были созданы стеклокристаллические материалы с ценными техническими свойствами. В СССР наиболее интенсивно исследования в этой области проводились в Московском химико-технологическом институте им. Д. И. Менделеева. В конце 1950-х гг. в США был открыт способ стимулирования процесса кристаллизации стекла с целью получения новых ценных материалов из «расстеклованной массы». С этого времени процесс кристаллизации стекла, известный как самопроизвольный (или спонтанный) и приносивший большие потери на производстве, стало возможно контролировать. Первое официальное сообщение о создании новой отрасли по превращению стекла в тонкокристаллическую «стеклокерамику» было сделано в США в 1957. Новый материал, названный «пирокерам», представлял собой кристаллический материал, полученный из незакристаллизованного стекла. В ходе первых работ по стеклокристаллическим материалам многие исследователи давали им свои названия. Были выпущены модификации «пирокерама» под названиями «пирофлам», «центура», «фотокерам» и др. В Англии использовались названия «пиросил», «слагцерам». В Польше в зависимости от технологии изготовления - «силитал», «квазикерам», «шлаковый квазикерам». В СССР подобные силикатные поликристаллические материалы получили названия «ситаллы» или «шлакоситаллы». Помимо общности технологий производства, эти материалы объединяло еще и особое сочетание стеклообразной и кристаллической фаз, а также химическая кремнекислородная природа.
С 1960-х гг., когда начались интенсивные поиски наиболее рациональных способов изготовления нового материала, ситаллы стали широко использовать в промышленных масштабах.
Разновидности
Стеклокристаллические материалы разделяют на ряд видов, важнейшими из которых являются ситаллы, получаемые из технически чистых материалов, и шлакоситаллы, получаемые на основе дешевого сырья -металлургических шлаков. Технология шлакоситалла была разработана в Советском Союзе. В основе всех работ в этом направлении лежат исследования профессора И. И. Китайгородского (см. КИТАЙГОРОДСКИЙ Исаак Ильич) , впервые введшего в обиход само слово «ситалл» и разработавшего концепцию использования отходов различных производств, включая доменные шлаки, для получения нового вида материала из стекла. Первые шлакоситаллы в зависимости от чистоты шлакового сырья и его состава получались серых, коричневых, зеленовато-бурых тонов. Их применяли в основном в технике и строительстве (например, в виде листов и плиток для настила полов в химических цехах, гражданских сооружениях). Чтобы получить из них декоративные материалы, необходимо было расширить цветовую гамму. Любые цветные материалы можно создать на основе белого с использованием красителей. Выпуск белой разновидности шлакоситаллов был налажен в 1970. Панели и плиты из этого материала с цветовыми добавками стали применять при облицовке фасадов.
Получение
Технология получения ситаллов состоит из нескольких операций. Сначала получают изделия из стекломассы теми же способами, что и обычные стекла. Затем его подвергают чаще всего двухступенчатой термической обработке при температурах 500-700°С и 900-1100°С. На первой ступени происходит образование зародышей кристаллизации, на второй – развитие кристаллических фаз. Для обеспечения равномерной тонкокристаллической кристаллизации по всему объему были разработаны два подхода: гомогенное и гетерогенное ядрообразование. Если образование центров кристаллизации при зарождении новой фазы вещества внутри другой его фазы происходит в отсутствие посторонних частиц, то такой процесс определяется как гомогенная кристаллизация. В противном случае - это катализированная или гетерогенная кристаллизация. При помощи гомогенной кристаллизации получают рубиновые, опаловые и некоторые светочувствительные стекла, а по второй технологии - стеклокристаллические материалы. Содержание кристаллических фаз к окончанию технологического процесса достигает порядка 95%, размеры оптимально развитых кристаллов составляют 0,05-1 мкм. Изменение размеров при кристаллизации не превышает 1-2%.
Суммарные свойства стеклокерамики зависят от свойств и количественного содержания составляющих его частей - стеклообразной фазы и кристаллов, погруженных в стеклянную матрицу. В основе всех технологий получения стеклокристаллических материалов лежал метод направленной (катализированной) кристаллизации стекла.
Технические ситаллы получают на основе искусственных шихт тех частей силикатных систем, в которых кристаллизуются фазы, обладающие заданными свойствами. Для термостойких ситаллов такими фазами являются кордиерит (см. КОРДИЕРИТ) , сподумен (см. СПОДУМЕН) LiAlSi 2 O 6 , эвкриптит LiAlSiO 4 ; для высокопрочных - шпинель (см. ШПИНЕЛЬ (минерал)) , для диэлектриков - кордиерит, диопсид (см. ДИОПСИД) , волластонит (см. ВОЛЛАСТОНИТ) и т.д. Такие свойства как плотность, коэффициент термического расширения, теплопроводность, модуль упругости и диэлектрическая проницаемость зависят от свойств фаз и аддитивно меняются с изменением содержания этих фаз. На фазовый состав ситаллов влияют малые (до 1,5%) добавки модификаторов (Na, K, Ca, Ba и др.), стеклообразователей (В, Р и др.) и окислов промежуточного типа, введение которых не меняет состав основных фаз, но заметно увеличивает или снижает их содержание.
В качестве катализаторов и центров кристаллизации, обуславливающих выделение в материале при последующей термообработке огромного числа центров кристаллизации и создающих тем самым условия для образования тонкокристаллической структуры материала, используют катализаторы двух видов. К первому относятся металлические Au, Ag, Cu, Pt, Pd в количествах от сотых до десятых долей %. При варке они растворяются в стекломассе, а при дальнейшей термической обработке выделяются в виде микрокристаллов, вокруг которых формируется конечная структура ситалла. Второй вид катализаторов - оксиды и соли различных металлов: TiO 2 , P 2 O 5 , Cr 2 O 3 , ZrO 2 , ZnO; фторидные Na 3 AlF 6 , Na 2 SiF 6 , CaF 2 и др. (обязательно совместно с Al 2 O 3), сера или сульфаты с добавкой кокса, сульфиды. С такими катализаторами стекла не получались однородными, а разделялись на различные по составу фазы. Одна из них образовывала в стекле капли, равномерно распределенные в другой фазе. В состав фотоситаллов вводят в качестве светочувствительных добавок Au, Ag, Cu в сочетании с сенсибилизаторами. Применение элементов платиновой группы (Pt, Re, Pd, Os, Ir) не требует присутствия сенсибилизаторов. Меняя режим термообработки, можно регулировать размеры и состав выделяющихся кристаллов и соответственно свойства материалов. Все стеклокристаллические материалы состоят из стекла и мелких (не более 1-2 мкм) равномерно распределенных кристаллов, причем содержание кристаллической фазы в зависимости от технологии получения колебались от 30-50 до 90% и более.
С целью удешевления производства и комплексного использования сырья для изготовления ситаллов привлечены: доменный шлак вместе с кварцевым песком - для получения шлакоситаллов; магматические горные породы основного состава (базальты (см. БАЗАЛЬТ) , габбро (см. ГАББРО) , траппы (см. ТРАППЫ) ), метаморфические породы (тремолитовые и тальковые сланцы), осадочные породы (лессовые суглинки, известковая глина), нефелиновый концентрат - для получения петроситаллов.
Для получения фотоситаллов изделия после отжига облучают ультрафиолетовыми, рентгеновскими или гамма-лучами. Проявление скрытого изображения происходит при нагревании стекол в интервале между температурой размягчения и отжига в течение 8 - 60 мин. Если облучать не всю поверхность изделия, а лишь определенные участки фотоситалла, то можно вызвать локальную кристаллизацию в заданном объеме. В ситаллах, изготовленных из светочувствительных стекол, получают непрозрачные белые или цветные трехмерные изображения. Различная растворимость кристаллической и прозрачной стекловидной фаз открывает возможности получения выпуклого изображения и производства из фотоситаллов технических изделий с сеткой прецизионно выполненных отверстий любого сечения. Закристаллизованные участки значительно легче растворяются в плавиковой кислоте, чем примыкающие к ним стеклообразные области.
Жаропрочность, электропроводность, механическая прочность зависят не только от свойств фаз, но в большей степени от структуры и потому не являются аддитивными. Плотная микростуктура обеспечивает высокую твердость и сопротивление абразивному износу. Повышение степени закристаллизованности увеличивает модуль упругости. Улучшению механических, термических, электроизоляционных свойQҠматериала и химической стойкости способствует низкое содержание стекловидной фазы. Контроль фазового состава и структуры в связи с тонкозернистостью ситаллов осуществляется в основном методами рентгенофазового анализа и электронной микроскопии.
Применение
Так как синтез ситаллов может быть осуществлен с учетом заранее заданных требований, ситаллы могут отличаться каким-либо одним главным свойством, например, механической или термической прочностью, химической устойчивостью, износостойкостью, прозрачностью и др., или обладать комплексом необходимых свойств. Это предопределило широкий спектр использования этих кристаллических материалов.
Высокие эксплуатационные характеристики ситалловых изделий (прочность и износостойкость, химическая стойкость, способность выдерживать высокие температурные перепады) обеспечивают этому классу материалов возможность широкого применения в строительстве в качестве облицовочного материала, элементов слоистых панелей в конструкциях промышленных зданий. Шлакоситалл хорошо зарекомендовал себя в качестве материала для настила полов промышленных и гражданских зданий, для облицовки наружных и внутренних стен, для футеровки (см. ФУТЕРОВКА) строительных конструкций, подверженных химическим воздействиям и абразивному износу. Для расширения цветовой гаммы шлакоситалла его поверхность можно декорировать силикатными эмалями.
Ситалл обладает высокой прочностью, твердостью, химической и термической стойкость, низким температурным коэффициент расширения, поэтому на предприятиях химической, коксохимической и нефтеперерабатывающей отраслей промышленности используют изделия из ситалла (панели, трубы, электроизоляторы и др.). Их получают методом стекольной или керамической технологии. Ситаллы применяют также для герметизации электровакуумных приборов, в оптике и т. д.
Фотоситаллы находят широкое применение в микроэлектронике, ракетной технике, космосе, оптике, полиграфии и бытовых приборах: из фотоситалла изготавливают перфорированные диски, применяемые в катодно-лучевых трубках и т.д.
Очень большое распространение в химическом машиностроении получили стеклокристаллические покрытия, наносимые на поверхность различных металлов для защиты их от коррозии, окисления и износа при обычных и повышенных температурах. Все шире области применения ситаллов в электронной промышленности. Их используют в качестве диэлектрической изоляции микросхем и межслойной изоляции печатных схем на керамических и других подложках. Ситаллы на основе горных пород (перлита и доломита) рекомендуются для изготовления высоковольтных стержневых и штыревых электроизоляторов.
В быту из ситаллов изготавливают жаропрочную хозяйственную посуду - кастрюли, жаровни, сотейники.


Энциклопедический словарь . 2009 .

Смотреть что такое "ситаллы" в других словарях:

    Ситаллы - – материалы, получаемые в результате объёмной кристаллизации стекла или шлака. [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Ситаллы – стеклокристаллические материалы, неорганические материалы,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Стеклокристаллические материалы, состоящие из одной или нескольких кристаллических фаз, равномерно распределенных в стекловидной фазе. Высокая прочность, твердость, химическая и термическая стойкость, низкий температурный коэффициент расширения.… … Большой Энциклопедический словарь

    ситаллы - Материалы, получаемые в результате объёмной кристаллизации стекла или шлака [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики строительные материалы прочие EN glass ceramicssitall DE Sitall FR sital … Справочник технического переводчика

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Ситаллы Энциклопедический словарь по металлургии

    СИТАЛЛЫ - закристаллизованные стекла стеклокристаллические материалы, получаемые при введении в расплавленное стекло затравки (катализаторов). Изменяя состав стекла или катализатора и режим термической обработки, получают ситаллы с определенными свойствами … Металлургический словарь

    Стеклокристаллические материалы, неорганические материалы, получаемые в результате объёмной кристаллизации стекол (См. Стекло) и состоящие из одной или несколько кристаллических фаз, равномерно распределённых в стекловидной фазе. Подбором … Большая советская энциклопедия

    - (стеклокристаллич. материалы), неорг. материалы, получаемые направленной кристаллизацией разл. стекол при их термич. обработке. Состоят из одной или нескольких кристаллич. фаз. В С. мелкодисперсные кристаллы (до 2000 нм) равномерно распределены в … Химическая энциклопедия, Зверев Виктор Алексеевич, Кривопустова Екатерина Всеволодовна, Точилина Татьяна Вячеславовна. Понятие "оптические материалы" охватывает сегодня огромное множество оптических сред, различающихся не только показателем преломления и коэффициентом дисперсии, но и прозрачностью для… Купить за 1655 грн (только Украина)


На сегодняшний день ювелирное производство достигло такого высокого уровня, что стало возможным создание искусственных минералов, которые имеют высокую схожесть со своими натуральными собратьями, но стоят очень дёшево. Наноситалл является одним из ярких примеров таких камней, подробнее о нём мы расскажем дальше.

Обусловлено это одной проблемой, которая тревожит абсолютно всех производственников – стоимость натуральных драгоценных (и полудрагоценных) минералов постоянно увеличивается, что обусловлено возрастающей инфляцией и сокращением их добычи. А второй момент – покупатели не готовы расставаться со своими деньгами и приобретать дорогостоящие ювелирные изделия.

Из-за такой тенденции производственным ювелирным предприятиям приходится приобретать более бюджетные варианты, которыми и выступают заменители природных самоцветов.

Камни, созданные ювелирами, получили множество различных названий – так, их именуют и искусственными, и воссозданными, и прессованными, и гидротермальными, и выращенными и так далее. Суть от названия, конечно, совсем не меняется – исходный материал таких минералов создаётся людьми.

Говоря об искусственных камнях, не стоит делать акцент на названии материала, ведь намного более важными являются потребительские свойства ювелирных камней, а также степень схожести подделки с натуральным камнем и, безусловно, стоимость.

Наноситалл – что это

Наноситалл является созданным в искусственных условиях оптическим поликристаллическим камнем, различающимся по степени своей прозрачности. Процесс его получения включает в себя кристаллизацию стекла с нужными химическими компонентами, в результате чего получают материал, которому присущи более высокие свойства, чем изначальному стеклу.

На сегодняшний день наноситалл производят только в одной компании в мире – российской RusGems. Эксперты компании долго занимались разработкой наиболее оптимальных технологий, чтобы по итогу получить совершенный искусственный материал.

Основа наноситалла – это оксиды SiO2 и Al2O3. Затем к составу добавляются прочие ингредиенты, наличие которых обеспечивает запланированные физические и химические свойства, а также те внешние показатели, благодаря которым наноситалл максимально схож с природными самоцветами.

Камень может обладать любыми цветовыми характеристиками, варьироваться в своих размерах и по степени прозрачности. Покупателей приятно порадует достаточно демократичная стоимость украшений с наноситаллом, плюс к этому без специального образования и аппаратуры различить, где натуральный камень, а где подделка возможно не всегда.

Немаловажное достоинство самоцвета – в нём нет вредных компонентов и примесей, благодаря чему украшения с наноситаллами не причинят вреда вашему здоровью.


Историческая справка о наноситалле

Если говорить о самой технологии по созданию искусственных камней, то она на сегодня существует уже больше, чем 50 лет. А формула, по которой создаётся современный вариант наноситалла, несколько более поздняя.

Мы до этого уже упомянули, что единственной компанией в мире, производящей минерал, выступает российская RusGems. Срок её существования на мировом ювелирном рынке синтетического производства — немного больше пятнадцати лет. Эксперты организации постоянно совершенствуют качество изготовляемых кристаллов и расширяют их цветовой ассортимент.

Характеристики наноситалла

Если сочетать все характеристики наноситалла, то в результате выходит поистине уникальный самоцвет.

Главные пункты, по которым оценивают минерал это:

  • Чистота — абсолютно чистые натуральные самоцветы встречаются весьма и весьма редко, почти все камни природного происхождения обладают разными внутренними изъянами: разными трещинками, пузырьками или включениями других камней, но это совершенно не относится к наноситаллу. Для искусственно созданных камней характерна чистота и полная прозрачность.
  • Цветовая палитра — благодаря возможности обеспечивать контроль над процессом создания минерала, путём добавления к нему разных примесей, становится реальным получение любого оттенка, максимально приближенного к природному аналогу имитации.
  • Цветовая устойчивость. Окраска минералов не меняется в течение длительного промежутка времени — минералы не тускнеют, не выгорают под солнечными лучами, как это нередко происходит с натуральными самоцветами. Изделия с наноситаллами могут использоваться в любых погодных условиях независимо от поры года, а цвет гарантированно сохранится в своём первозданном виде.
  • Блеск — также, как и цвет в полной мере соответствует природным минералам. По своему блеску камни разделяются на матовые, перламутровые и глянцевые.
  • Степень твёрдости — наноситалл отличается самой оптимальной твёрдостью, которая соответствует семи баллам по шкале Мооса. Это значит, что минерал не является очень твёрдым, но и не самым мягким.
  • Устойчивость к температурному воздействию — ненатуральные камни можно нагревать до пятисот градусов по Цельсию, при этом их характеристики ничуть не изменятся.
  • Параметры минерала — огромное преимущество наноситалла заключается в том, что возможно создание кристаллов любого размера и формы. Кроме этого, могут меняться размеры самоцвета, его форма, цветовые показатели и прочие характеристики исходя из личных пожеланий заказчика.

Магические и лечебные свойства наноситалла

Так как привлекательный, но «неживой» минерал был создан человеком, он не имеет никаких магических способностей. Это не может быть расценено в качестве существенного минуса, ведь если натуральные камни способны, как приносить пользу для одних людей, так и быть очень вредными для других, а в случае с наноситаллом использовать его можно всем, совершенно безбоязненно.

Наноситалл и астрология

Как мы уже упомянули выше, изделия с наноситаллом могут применяться представителями разных Зодиакальных созвездий. Поэтому не мучайте себя пустыми сомнениями и смело отправляйтесь в магазин за приятной и безопасной покупкой!

А в завершение не забудьте просмотреть интересное тематическое видео:

Погадайте на сегодняшний день c помощью расклада Таро "Карта дня"!

Для правильного гадания: сосредоточьтесь на подсознании и ни о чем не думайте хотябы 1-2 минуты.

Как будете готовы - тяните карту:



Понравилась статья? Поделиться с друзьями: