Источники электрической энергии. Альтернативные источники энергии

О том, что запасы нефти, газа и угля не бесконечны, знают даже школьники. Цены на энергоносители постоянно повышаются, заставляя плательщиков тяжко вздыхать и задумываться об увеличении собственных доходов. Несмотря на достижения цивилизации, за пределами городов остается немало мест, в которые не подведен газ, а кое-где нет даже электричества. Там же, где такая возможность есть, стоимость работ по монтажу системы порой абсолютно не соответствует уровню доходов населения. Неудивительно, что альтернативная энергия своими руками вызывает сегодня интерес как у владельцев больших и малых загородных домов, так и у горожан.

Весь окружающий нас мир полон энергии, которая содержится не только в недрах земли. Еще в школе, на уроках географии, мы узнали, что можно с высокой эффективностью в использовать энергию ветра, солнца, приливов и отливов, падающей воды, земного ядра и прочих подобных энергоносителей в масштабах целых стран и континентов. Однако использовать можно и для отопления отдельного дома.

Виды альтернативных источников энергии

Среди вариантов природных источников частного энергоснабжения следует отметить:

  • солнечные батареи;
  • солнечные коллекторы;
  • тепловые насосы;
  • ветрогенераторы;
  • установки для поглощения энергии воды;
  • биогазовые установки.

Располагая достаточным количеством средств, можно купить готовую модель одного из подобных устройств и заказать ее монтаж. Откликаясь на пожелания потребителей, промышленники давно освоили изготовление солнечных панелей, тепловых насосов и т. п. Однако их стоимость остается стабильно высокой. Такие устройства вполне можно сделать самостоятельно, сэкономив некоторое количество денег, но затратив больше времени и сил.

Видео: какую природную энергию можно использовать

Принцип действия и применение солнечных батарей в частном доме

Физическое явление, на котором основан принцип работы этого источника энергии – фотоэффект. Солнечный свет, попадая на её поверхность, высвобождает электроны, что создает избыточный заряд внутри панели. Если подключить к ней аккумулятор, то благодаря зарнице в количестве зарядов в цепи появится ток.

Принцип работы солнечной батареи заключается в фотоэффекте

Конструкции, способные улавливать и преобразовывать энергию солнца, многочисленны, разнообразны и постоянно улучшаются. Для множества народных умельцев совершенствование этих полезных конструкций превратилось в отличное хобби. На тематических выставках такие энтузиасты охотно демонстрируют множество полезных идей.

Чтобы сделать солнечные батареи, необходимо приобрести монокристаллические или поликристаллические фотоэлементы, поместить их в прозрачный каркас, который фиксируют прочным корпусом

Видео: изготовление солнечной батареи своими руками

Готовые батареи размещают, разумеется, на самой солнечной стороне крыши. При этом следует предусмотреть возможность регулирования наклона панели. Например, во время снегопадов панели следует размещать практически вертикально, иначе слой снега может помешать работе батарей или даже повредить их.

Устройство и использование солнечных коллекторов

Примитивный солнечный коллектор представляет собой пластину из металла черного цвета, помещенную под тонкий слой прозрачной жидкости. Как известно из школьного курса физики – темные предметы нагреваются сильнее, чем светлые. Эта жидкость при помощи насоса движется, охлаждает пластину и нагревается при этом сама. Контур с нагретой жидкостью можно поместить в бак, подключенный к источнику холодной воды. Нагревая воду в баке, жидкость из коллектора охлаждается. А затем и возвращается обратно. Таким образом, эта энергосистема позволяет получить постоянный источник горячей воды, а в зимнее время ещё и горячие батареи отопления.

Существует три вида коллекторов, отличающихся устройством

На сегодняшний день существует 3 типа таких устройств:

  • воздушные;
  • трубчатые;
  • плоские.

Воздушные

Воздушные коллекторы состоят из пластин темного цвета

Воздушные коллекторы представляют собой пластины чёрного цвета, закрытые стеклом или прозрачным пластиком. Вокруг этих пластин естественно или принудительно циркулирует воздух. Теплый воздух применяется для обогрева комнат в доме или же для сушки белья.

Достоинством является предельная простота конструкции и низкая стоимость. Единственным недостатком является применение принудительной циркуляции воздуха. Но можно обойтись и без неё.

Трубчатые

Плюс такого коллектора - простота и надежность

Трубчатые коллекторы имеют вид нескольких выстроенных в ряд стеклянных трубок, покрытых изнутри светопоглощающим материалом. Они соединены в общий коллектор и через них циркулирует жидкость. Такие коллекторы имеют 2 способа передачи полученной энергии: прямой и косвенный. Первый способ используется в зимнее время. Второй же применяется круглогодично. Существует вариация с использованием вакуумных трубок: одна вставляется в другую и между ними создается вакуум.

Это изолирует их от окружающей среды и лучше сохраняет полученное тепло. Достоинствами являются простота и надёжность. К недостаткам можно отнести высокую стоимость установки.

Плоские

Чтобы сделать работу коллекторов эффективнее, инженеры предложили использовать концентраторы

Плоский коллектор – самый распространенный тип. Именно он послужил примером для объяснения принципа действия этих устройств. Достоинством этой разновидности являются простота и дешевизна в сравнении с другими. Недостатком является значительная потеря тепла, чем другие подтипы не страдают.

Чтобы улучшить уже существующие гелиосистемы инженеры предложили применять подобие зеркал, названное концентраторами. Они позволяют поднять температуру воды со стандартных 120 до 200 C°. Этот подвид коллекторов получил название концентрационных. Это один из самых дорогостоящих вариантов исполнения, что, несомненно, является недостатком.

Полная инструкция по изготовлению монтажу солнечного коллектора в нашей следующей статье:

Использование энергии ветра

Если ветер способен гонять стаи туч, почему бы не использовать его энергию на другие полезные дела? Поиски ответа на этот вопрос привели инженеров к созданию ветрогенератора. Это устройство обычно состоит из:

  • генератора;
  • высокой башни;
  • лопастей, которые вращаются, улавливая ветер;
  • батареи;
  • системы электронного управления.

Принцип действия ветрогенератора довольно прост. Лопасти, вращаясь от сильного ветра, вращают валы трансмиссии(в простонародье – коробку передач). Они соединены с генератором переменного тока. Трансмиссия и генератор расположены в люльке или, по-другому, гондоле. Она может иметь поворотный механизм. Генератор подключен к управляющей автоматике и повышающему напряжение трансформатору. После трансформатора напряжение, увеличившее своё значение, отдается в общую систему электроснабжения.

Ветрогенераторы подходят для местности, где постоянно дует ветер

Поскольку вопросы создания ветрогенераторов изучаются довольно давно, существуют проекты самых разнообразных конструкций этих устройств. Модели с горизонтальной осью вращения занимают довольно большое пространство, а вот ветрогенераторы с вертикальной осью вращения гораздо компактнее. Разумеется, для эффективной работы устройства требуется достаточно сильный ветер.

Достоинства:

  • отсутствие выбросов;
  • автономность;
  • использование одного из возобновляемых ресурсов;

Недостатки:

  • необходимость в постоянстве ветра;
  • высокая начальная цена;
  • шум, издаваемый при вращении, и электромагнитное излучение;
  • занимают большие площади.

Ветрогенератор необходимо разместить как можно выше, чтобы его работа была эффективной. Модели, которые имеют вертикальную ось вращения, компактнее, чем при горизонтальном вращении

Пошаговое руководство по изготовлению ветрогенератора своими руками на нашем сайте:

Вода как источник энергии

Самый известный способ использования воды для получения электричества - это, конечно же, ГЭС. Но он не единственный. Есть ещё энергия приливов и энергия течений. А теперь по порядку.

Гидроэлектростанция это плотина, в которой имеется несколько шлюзов для управляемого сброса воды. Эти шлюзы соединены с лопастями турбогенераторов. Протекая под давлением, вода раскручивает его, тем самым вырабатывая электричество.

Недостатки:

  • затопление прибрежных территорий;
  • уменьшение численности обитателей рек;

Для использования энергии воды строят специальные станции

Сила течений

Этот способ получения энергии похож на ветрогенератораторный, с той лишь разницей, что генератор с лопастями огромных размеров размещается поперек крупного морского течения. Такого как Гольфстрим, например. Но это очень дорого и технически сложно. Поэтому всё крупные проекты остаются пока на бумаге. Тем не менее, существуют небольшие, но действующие проекты, демонстрирующие возможности этого вида энергии.

Энергия приливов

Конструкция электростанции, превращающая эту разновидность энергии в электричество, представляет собой огромную плотину, размещенную в морском заливе. В ней есть отверстия, через которые вода проникает на обратную сторону. Они связаны трубопроводом с электрогенераторами.

Работает приливная электростанция следующим образом: во время прилива уровень воды повышается и создается давление, способное вращать вал генератора. По окончании прилива впускные отверстия закрываются и во время отлива, который происходит через 6 часов, открывают выпускные и процесс повторяется в обратную сторону.

Плюсы этого способа:

  • дешевое обслуживание;
  • приманка для туристов.

Недостатки:

  • значительные затраты на строительство;
  • вред для морской фауны;
  • ошибки при проектировании могут вызвать затопление близлежащих городов.

Применение биогаза

Во время анаэробной переработки органических отходов выделяется так называемый биогаз. В результате получается смесь газов, состоящая из метана, углекислоты и сероводорода. Генератор для получения биогаза состоит из:

  • герметичного бака;
  • шнека для перемешивания органических отходов;
  • патрубка для выгрузки отработанной массы отходов;
  • горловины для заливки отходов и воды;
  • патрубка, по которому поступает полученный газ.

Нередко емкость для переработки отходов устраивают не на поверхности, а в толще грунта. Чтобы не допустить утечки полученного газа, ее делают полностью герметичной. При этом следует помнить о том, что в процессе выделения биогаза давление в емкости постоянно повышается, поэтому газ требуется из емкости регулярно отбирать. Помимо биогаза в результате переработки получается отличное органическое удобрение, полезное для выращивания растений.

К устройству и правилам эксплуатации такого предъявляются повышенные требования безопасности, поскольку биогаз опасно вдыхать и он может взорваться. Впрочем, в ряде стран мира, например, в Китае, этот способ получения энергии распространен довольно широко.

Подобная установка для получение биогаза может стоить недешево

Этот продукт переработки отходов можно использовать как:

  • сырье для тепловой электростанции и когенерационной установки;
  • замену природному газу в плитах, горелках и котлах.

Сильной стороной этого вида топлива являются возобновляемость и доступность, особенно в деревнях, сырья для переработки. Этот вид топлива имеет и ряд недостатков, таких как:

  • выбросы от сжигания;
  • несовершенная технология получения;
  • цена аппарата для создания биогаза.

Конструкция генератора для получения биогаза очень проста, однако при его эксплуатации следует соблюдать определенную осторожность, поскольку биогаз - опасное для здоровья горючее вещество

Состав и количество биогаза, получаемого из отходов, зависит от субстрата. Больше всего газа получают при использовании жира, зерна, технического глицерина, свежей травы, силоса и т. п. Обычно в бак загружают смесь из отходов животного и растительного происхождения, в которую добавляют некоторое количество воды. В летнее время рекомендуется увеличить влажность массы до 94-96%, а в зимнее время достаточно и 88-90% влаги. Воду, подаваемую в резервуар с отходами, следует подогревать до 35-40 градусов, иначе процессы разложения будут замедлены. Чтобы сохранить тепло, снаружи на бак монтируют слой теплоизоляционного материала.

Применение биотоплива (биогаза)

Действие теплового насоса основано на обратном принципе Карно. Это довольно большое и достаточно сложное устройство, которое собирает низкопотенциальную тепловую энергию окружающей среды и преобразовывает ее в энергию с высоким потенциалом. Чаще всего тепловые насосы используют для обогрева помещений. Устройство состоит из:

  • наружного контура с теплоносителем;
  • внутреннего контура с теплоносителем;
  • испарителя;
  • компрессора;
  • конденсатора.

В системе также используется фреон. Наружный контур теплового насоса может поглощать энергию из различной среды: земли, воды, воздуха. Затраты труда на его создание зависят от типа насоса и его конфигурации. Сложнее всего устроить насос типа «земля-вода», в котором наружный контур горизонтально располагается в толще грунта, поскольку это требует масштабных земляных работ. Если возле дома есть водоем, имеет смысл сделать тепловой насос типа «вода-вода». В этом случае наружный контур просто опускают в водоем.

Тепловой насос преобразует низкопотенциальную энергию земли, воды или воздуха в высокопотенциальную тепловую энергию, которая позволяет вполне эффективно обогреть здание

Эффективность работы теплового насоса зависит не столько от того, как высока температура среды, сколько от ее постоянства. Правильно спроектированный и установленный тепловой насос может обеспечить дом достаточным количеством тепла в зимнее время, даже при очень низкой температуре воды, земли или воздуха. В летнее время тепловые насосы могут выполнять роль кондиционера, охлаждая жилище.

Чтобы использовать такие насосы, нужно предварительно выполнить буровые работы

К достоинствам этих установок можно отнести:

  • энергоэффективность;
  • пожаробезопасность;
  • многофункциональность;
  • длительная эксплуатация до первого капитального ремонта.

Слабой стороной подобной системы являются:

  • высокая изначальная цена в сравнении с другими способами обогрева здания;
  • требование к состоянию питающей электросети;
  • более шумные, чем классический газовый котел;
  • необходимость проведения буровых работ.

Видео: как работают тепловые насосы

Как видите, для того чтобы обеспечить свой дом теплом и электричеством, можно использовать солнечную энергию, силу ветра и воды. У каждого из способов есть свои преимущества и недостатки. Но тем не менее, из всех существующих вариантов можно использовать метод, который будет и недорогим, и эффективным.

Без электроэнергии жизнь любого дома практически немыслима: электричество помогает в приготовлении пищи, отоплении помещения, закачке в него воды и в простом освещении. Но что делать, если там, где вы живете, еще нет коммуникаций, то на помощь придут альтернативные источники электроэнергии.


В нашем обзоре мы собрали несколько распространенных в быту альтернативных источников электричества, которые широко применяются как в России, так и в европейских странах и на американском континенте. Во многом они, конечно, дороже и более сложны в эксплуатации, чем центральная энергосеть; однако финансовые вложения будут полностью оправданы качественной и надежной службой, а также созданием благоприятной экологической среды.

Электрогенераторы

Самый популярный в России альтернативный источник энергии, который больше всего востребован в частных загородных домах. По типу используемого горючего электрогенераторы бывают дизельными, бензиновыми и газовыми.

Дизельные генераторы обладают массой преимуществ, среди которых экономичность, надежность и небольшой риск возникновения пожара. Если использовать дизельный генератор регулярно, то он гораздо выгодней моделей, работающих на газе или на бензине. Расход топлива дизельного оборудования не велик, цена на дизель также держится на невысоком уровне, он не потребует дорогостоящего ремонта.


Недостатки дизельного генератора – большое количество газов, выделяемых при работе, шум и высокая стоимость самого аппарата. Цена «среднего» оборудования с выходной мощностью около 5 кВт в среднем составляет около 23 000 рублей; впрочем, за одно лето работы он полностью себя окупает.

Бензиновый генератор идеально подойдет как резервный или сезонный источник тока. По сравнению с дизельными, бензиновые генераторы имеют небольшие размеры, издают мало шума при работе, и по стоимости ниже - средняя цена бензинового генератора мощностью 5 кВт колеблется в диапазоне 14 -17 тысяч рублей. Недостаток у бензинового генератора – большой расход топлива, да и высокий уровень выделяемого углекислого газа потребует от вас размещения электрогенератора в отдельном помещении.


Газовые генераторы – пожалуй, самые «выгодные» для применения в быту модели, которые отлично рекомендовали себя со всех сторон: они могут работать как от природного газа, так и от сжиженного топлива в баллонах. Уровень шума данного прибора очень низкий, а долговечность самая высокая; при этом цены лежат в умеренном диапазоне: за «домашний» прибор мощностью около 5 кВт придется отдать около 18 тысяч рублей.

Жизнь под солнцем

С каждым годом все популярнее становится еще один альтернативный источник электроэнергии – энергия солнца. Ее можно использовать не только для выработки электрической энергии, но и для обеспечения автономного отопления. На крышу, а иногда и на стены, устанавливаются солнечные батареи различной площади, которые имеют аккумулятор и инвертор; некоторое время назад мы писали об инновационной технологии – черепице со встроенными фотоэлементами (). Вот преимущества, которые обеспечивают солнечные батареи:
  • Использование возобновляемого источника энергии;
  • Абсолютно бесшумная работа;
  • Экологическая безопасность, отсутствие каких-либо выбросов в атмосферу;
  • Простой монтаж, возможность самостоятельной установки.

Особенно часто можно встретить солнечные батареи на европейском и российском юге, где количество солнечных дней и зимой, и летом превышает количество пасмурных. Но есть и свои нюансы, о которых также необходимо помнить:

Даже при самом «солнечном» раскладе погоды суммарная мощность всех установленных фотоэлементов вряд ли превысит 5-7 кВт в час. Поэтому, если учитывать хотя бы приблизительную оценку, что на обогрев дома требуется энергия из расчета 1 кВт на 10 квадратных метров, то получаем, что на полностью «солнечном» питании может жить только небольшой дачный домик; двух-трехэтажные дома все-таки потребуют от вас дополнительных источников энергии, особенно если расход воды и света также велик.


Но даже если домик маленький, то на установку оборудования придется выделить не менее 10 квадратных метров земли, поэтому на стандартных шести сотках с огородом и садом это представляется маловероятным.

И, конечно, есть вполне «природные» сложности – это зависимость от суточных и сезонных колебаний солнечного излучения: никто не гарантирует нам солнечной погоды даже летом. И еще один момент: хоть сами фотоэлементы и не выделяют токсичных веществ при работе, однако их утилизация не так проста, нужно сдавать их в специальные приемные пункты – так же, как и отработанные батарейки.




Стоимость готовой станции начинается от 100 тысяч рублей, что тоже устраивает далеко не всех. Впрочем, солнечную энергию можно использовать и более «дешевым» способом: установить на участок коллектор для нагрева воды – он будет улавливать тепло в дневное время даже в пасмурные и дождливые дни. В принципе, суточную потребность в горячей воде коллектор для нагрева полностью удовлетворяет, а цена его начинается от 30 000 рублей. Но этот вид оборудования не вырабатывает электричество и способен функционировать только в южных регионах, где солнечная активность достаточно высока.

С ветерком!

Установки для преобразования ветряной энергии в электричество уже не являются фантастическим техногенным будущим – достаточно посмотреть на поля в Германии и в Голландии, чтобы убедиться в повсеместном распространении ветряков.


Немного школьной физики: кинетическая энергия ветра преобразуется в механическую энергию вращения турбины, а инвертор, в свою очередь, генерирует переменный ток. Необходимо помнить вот о чем: минимальная скорость ветра, при которой будет образовываться электричество от маховика – 2 м/с, а оптимально, если скорость ветра будет в районе 5– 8 м/с; именно поэтому ветрогенераторы особенно популярны в северо-западных регионах Европы, где среднегодовая скорость ветра весьма высока. По типу конструкции ветряные генераторы различаются на горизонтальные и вертикальные: это зависит от крепления ротора.

Горизонтальная конструкция генератора хороша высоким показателем КПД, при монтаже будет использоваться небольшое количество материалов. Но придется столкнуться с некоторыми трудностями: для монтажа потребуется высокая мачта, а сам генератор имеет сложную механическую часть, и ремонт может быть очень сложным.


Вертикальные генераторы могут функционировать в большем диапазоне скоростей ветра; но при этом их установка гораздо сложнее, и для крепления мотора понадобится дополнительная фиксация.


Чтобы сгладить разницу между ветреным сезоном и штилем и питать дом электрическим током бесперебойно, ветряная станция обычно снабжается накопительным аккумулятором. Еще одной альтернативой установки аккумуляторной батареи к ветряной станции станет водонакопительный бак, который используется как для отопления, так и для горячего водоснабжения. В таком случае вам удастся немного сэкономить на покупке – впрочем, стоимость ветрогенератора все равно останется высокой: около 300 тысяч рублей, без аккумулятора – около 250 тысяч.

Еще один нюанс, который следует учитывать при обустройстве ветряной станции – необходимость создания фундамента под оборудование. Фундамент нужно укреплять с особенной тщательностью, если в вашей местности скорость ветра периодически превышает 10 -15 метров в секунду. А в зимний период необходимо будет следить, чтобы лопасти ветростанции не обледеневали, это сильно снижает КПД. Кроме того, вибрации и шум от работы ветряка становятся причиной того, что станцию желательно размещать не менее чем в 15 метрах от жилого дома.

Живая польза

О биотопливе как об «экологической технологии будущего» сейчас говорят везде и всюду. Вокруг него разгорелась масса споров и противоречивых отзывов: оно привлекательно в качестве топлива для машин, так как имеет привлекательную цену, но при этом многие водители подозревают негативное влияние биоматериала на мотор и мощность. Оставим в стороне автомобильные проблемы: ведь биотопливо может использоваться не только в качестве горючего для транспортных средств, но и как источник электрического тока: им можно заменить газ, бензин и дизель при заправке оборудования.


Биотопливо производится путем переработки растительных остатков – стеблей и семян. Для изготовления биологического дизеля применяют жиры из семян масляных культур, а бензин производят путем ферментации кукурузы, сахарного тростника, свеклы и других растений. Наиболее оптимальным источником биологической энергии признаны водоросли, так как они неприхотливы в выращивании и легко превращаются в биомассу с похожими на нефть маслянистыми свойствами.


По данной технологии также получают биологический газ, который собирают при брожении органических отходов пищевой промышленности и животноводства: на 95 % он состоит из метана. Экологические технологии позволяют собирать природный газ на...свалках! 1 тонна бесполезного мусора производит до 500 кубометров полезного газа, который потом превращается в целлюлозный этанол.

Если говорить о бытовом использовании биотоплива для выработки электрической энергии, то для этой цели нужно приобрести индивидуальную биогазовую установку, которая будет вырабатывать природный газ из отходов. Понятно, что этот вариант реализуем только в загородном доме, где есть собственная свалка биологических отходов на улице.

Стандартная установка даст вам от 3 до 12 кубометров газа в сутки; полученный газ затем может использоваться для отопления дома и заправки различного оборудования, в том числе и газового генератора электроэнергии, о котором мы писали выше. К сожалению, биогазовые установки пока что доступны не повсеместно: отдать за нее придется как минимум 250 000 рублей.

Приручить поток

Если у вас есть в распоряжении собственная проточная вода (участок ручья или речки), то хорошим решением станет строительство индивидуальной ГЭС. По монтажу этот тип генераторов энергии относится к самым сложным, зато его КПД значительно выше, чем у всех вышеописанных источников – и ветряных, и солнечных, и биологических. ГЭС могут быть плотинными и бесплотинными, второй вариант более распространен и доступен – часто можно встретить синонимичное название «проточная станция». По своему устройству станции делятся на несколько типов:

Наиболее оптимальный и распространенный вариант, который подходит для изготовления своими руками – это станция с пропеллером или колесом; можно найти в интернете массу инструкций и полезных советов.

Самым же сложным и неудобным решением будет гирляндная установка: она имеет невысокую производительность, довольно опасна для окружающих людей, а монтаж станции потребует расхода большого количества материалов и много времени. В этом плане ротор Дарье более удобен, так как ось расположена вертикально, а установить ее можно над водой. При этом смонтировать такую станцию будет сложно, а ротор при старте необходимо вручную раскручивать.

Если приобретать готовую мини-ГЭС, то ее средняя стоимость составит около 200 тысяч рублей; самостоятельный сбор комплектующих сэкономит до 30% стоимости, но потребует много времени и сил. Что из этого лучше – решать только вам.

Перспективы использования альтернативных источников энергии

Традиционные источники энергии становятся неактуальными. Множество причин заставляет человечество отказываться от них. Сегодня основное внимание направлено на альтернативные способы, уже применяющиеся на практике и планируемые на будущее. Исследования продолжаются, поэтому наука движется вперёд, не останавливаясь на достигнутых результатах. Сейчас можно оценить некоторые достижения, уже давшие первые результаты, чтобы понять, насколько выгодными станут новые направления через несколько лет.

Альтернативная энергия продолжает распространяться. Причиной являются её явные преимущества перед традиционными источниками, которые сложно опровергнуть. В некоторых странах правительство ведёт сложные государственные программы с колоссальными денежными вложениями для постепенной замены, но пока результаты остаются незначительными.



Какие основные виды можно выделить?
  • Энергия молнии;
  • Энергия атома.

Бесконечные исследования позволяют сопоставить возможности, предлагаемые природой. Человечество продолжает искать новые направления, которые в будущем наверняка превратятся в идеальную замену традиционных источников. Подробное описание даст общую информацию, а также укажет, какие виды уже нашли применение в повседневной жизни населения планеты.

Энергия солнца используется человеком давно. Первоначальные попытки делались в древние времена, когда посредством направленного луча люди зажигали дерево. Современные способы основываются на использовании больших площадей батарей, собирающих потоки для последующей обработки и накопления в аккумуляторах.


При помощи такой энергии летают все космические станции и спутники. На орбите доступ к звезде открыт, но и на Земле некоторые страны активно пользуются новым источником. Одним из примеров являются целые «поля» батарей, обеспечивающие небольшие городки. Хотя намного интереснее рассмотреть новые небольшие автономные источники, где площадь поверхности не превышает крыши маленького дома. Они устанавливаются в частном порядке по всему миру, чтобы осуществлять отопление без лишних затрат.

Энергия ветра используется человечеством испокон веков. Лучшим примером этого являются парусники, двигающиеся за счёт постоянного воздушного потока. Теперь научные исследования позволили создать специальные генераторы, обеспечивающие электричеством целые города. Причём они работают по двум принципам:

  • Автономно;
  • Параллельно с основной сетью.



В обоих случаях удаётся постепенно заменять традиционный источник, сокращая пагубное воздействие на окружающую среду. Сейчас можно оценить достигнутые результаты, подтверждающие правильность выбора. Данные подсказывают, что в Дании 25% получаемой энергии приходится именно на ветряные электростанции. Многие страны стараются постепенно перейти на новые источники, но это возможно только на открытых пространствах. Из-за чего в отдельных районах использование лучшего варианта остаётся недоступным.

Энергия воды остаётся незаменимой. Раньше она применялась на простых мельницах и кораблях, а сейчас огромные турбинные ГЭС поставляют электричество в целых регионах. Последние разработки предлагают человечеству познакомиться с фантастическим будущим, которое будет построено на новейших источниках. Какие альтернативы уже используются странами?

  • Приливные электростанции;
  • Волновые электростанции;
  • Микро и мини ГЭС;
  • Аэро ГЭС.

Приливные электростанции используют энергию приливов. Их высота и мощь зависит от воздействия Луны, поэтому стабильность подачи остаётся некоторой проблемой. Хотя во Франции, Индии, Великобритании и нескольких других государствах проект воплощён в жизнь и успешно используется в качестве незаменимой поддержки.



Волновые электростанции строятся на берегах океанов, где мощь регулярных ударов о побережье превышают мыслимые пределы. В этом случае ограничением становится недостаточная сила. Она не позволяет получить достаточное количество энергии.

Микро и мини ГЭС подходят для узких горных рек. Их небольшие размеры позволяют свободно найти время, а их мощность подходит для обеспечения маленьких поселений. Опытные модели проверены, поэтому сейчас строятся действующие объекты, обладающие неплохими показателями.

Аэро ГЭС – новейшая технология, которая пока ещё проходит проверку. Она основана на конденсации влаги из атмосферы. Действующие установки пока остаются призрачной мечтой, но есть определённые показатели, подтверждающие целесообразность вложения денежных средств в разработки.

Геотермальная энергия остаётся распространённой. Такой альтернативный источник используется несколькими различными способами. Он остаётся одним из самых интересных для определённых регионов, поэтому отказ от неё не имеет смысла. Единственной проблемой является высокая стоимость установок, что ограничивает их количество. Какие варианты возможны?

  • Тепловые электростанции;
  • Грунтовые теплообменники.


Энергия молнии

Энергия молнии – новое веяние. Это направление только начинает разрабатываться, но учёные утверждают, что есть возможность использования доступных гигаватт. Они теряются впустую, уходя в грунт. Американская компания приступила к исследованиям, которые ориентированы на создание специальных установок для улавливания гроз.

Энергия молнии – мощный источник, способный обеспечить электроэнергией крупный район мегаполиса. Ориентировочные денежные затраты на строительство должны окупаться в течение 5─7 лет, так что целесообразность подобных вложений остаётся неоспоримой. Остаётся только дождаться окончания исследований для внедрения новой технологии в широкий обиход.

«Солнечные окна». Солнце — очевидный и надёжный источник энергии, но для солнечных батарей требуются чрезвычайно дорогие материалы. Технология SolarWindow использует прозрачные пластиковые стёкла, служащие одновременно панелями солнечных батарей. Их можно устанавливать в качестве обычных окон, и цена производства вполне приемлема.


Приливы. Мы начали присматриваться к приливам в качестве источников энергии совсем недавно. Наиболее перспективный волновой генератор — Oyster — был разработан лишь в 2009 году. Название переводится как «устрица», так как именно её он внешне напоминает. Двух установок, запущенных в Шотландии, хватает для обеспечения энергией 80 жилых домов.


Генератор микроволн — амбициозный проект британского инженера Роберта Шоера, предлагающий полностью отказаться от привычного топлива космических аппаратов. Резонирующие микроволны гипотетически должны создавать мощную реактивную тягу, при этом попутно опровергая третий закон Ньютона. Работает система или является шарлатанством, пока неясно.


Вирусы. Учёные из Национальной лаборатории им. Лоуренса в Беркли пару лет назад обнаружили вирус, способный создавать электроэнергию за счёт деформации модифицированных материалов. Такие свойства проявили безвредные вирусы-бактериофаги M13. Сейчас эта технология используется для подпитки экранов ноутбуков и смартфонов.


Один из самых известных и широко распространённых альтернативных источников энергии — геотермальная. Она берётся из жара самой Земли и потому не тратит её ресурсов. Одна тепловая электростанция, «сидящая» на вулкане, обеспечивает током около 11500 жилых домов.


Существует ещё одна солнечная батарея нового типа, правда, делающая упор не на дешевизну, а на эффективность. Betaray представляет из себя наполненную особой жидкостью сферу, обтянутую улавливающими тепло панелями. Устройство вырабатывает в четыре раза больше энергии, чем обычные солнечные батареи.


Биотопливо — весьма перспективный источник энергии, буквально выращиваемый на полях. Его добывают из растительных масел — например, сои или кукурузы. Но самыми перспективными являются… водоросли, отдающие стократно больше ресурсов, чем наземные растения. И даже отходы от них можно использовать в качестве удобрения.


Радиоактивный торий весьма напоминает уран, но отдаёт в 90 раз больше энергии! Правда, для этого учёным приходится изрядно попотеть, и в основном торий играет второстепенную роль в ядерных реакторах. Его запасы в земной коре превышают запасы урана в 3−4 раза, так что потенциально торий способен обеспечить человечество энергией на сотни лет.


Надувная турбина по сути является следующим уровнем развития ветряных электростанций. Турбина, наполненная гелием, поднимается на высоту до 600 метров, где ветер дует постоянно и с огромной силой. Кроме окупаемости по энергии, устройство также весьма устойчиво к любой непогоде и дешево.


Международный экспериментальный термоядерный реактор. Несмотря на все опасности, связанные с атомными станциями, они всё равно остаются мощнейшими источниками энергии, изобретёнными человеком. ITER — проект международного термоядерного реактора, в котором участвуют: страны ЕС, Россия, США, Китай, Корея, Япония и Казахстан. Конец строительства реактора запланирован на 2020 год.

Основные источники энергии — например, уголь или нефть, имеют обыкновение кончаться, и к тому же загрязняют окружающую среду. Им противопоставляются возобновляемые ресурсы — такие как геотермальная энергия или солнечное излучение. Рассмотрим десять альтернативных источников энергии, которые уже показали себя в деле.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.



Понравилась статья? Поделиться с друзьями: